Question 1

(a) The figure below, not drawn to scale, shows the points $O(0,0), A(5,0)$ and $B(-1,4)$ which are the vertices of a triangle $O A B$.

(i) Express in the form $\binom{a}{b}$ the vectors
a) $\quad \overrightarrow{O B}$
b) $\quad \overrightarrow{O A}+\overrightarrow{O B}$
(3 marks)
(ii) If $M(x, y)$ is the midpoint of $A B$, determine the values of x and y.

(2 marks)

(b) In the figure below, not drawn to scale, $O E, E F$ and $M F$ are straight lines. The point H is such that $E F=3 E H$. The point G is such that $M F=5 M G . M$ is the midpoint of $O E$.
The vector $\overrightarrow{O M}=v$ and $\overrightarrow{E H}=u$.

(i) Write in terms of \boldsymbol{u} and/or \boldsymbol{v}, an expression for:
a) $\overrightarrow{H F}$
b) $\quad \overrightarrow{M F}$
(2 marks)
c) $\overrightarrow{O H}$
(2 marks)
(ii) Show that $\overrightarrow{O G}=\frac{3}{5}(2 v+u)$
(iii) Hence, prove that O, G and H lie on a straight line.

Question 2

The diagram below shows position vectors $\overrightarrow{O P}$ and $\overrightarrow{O Q}$.

(a) Write as a column vector, in the form $\binom{x}{y}$
(i) $\overrightarrow{O P}$
(1 mark)
(ii) $\overrightarrow{O Q}$
(1 mark)
(b) The point R has coordinates $(8,9)$.
(i) Express $\overrightarrow{Q R}$ as a vector in the form $\binom{x}{y}$.
(2 marks)
(ii) Using a vector method, show that $\overrightarrow{O P}$ is parallel to $\overrightarrow{Q R}$. (1 mark)
(iii) Determine the magnitude of the vector $\overrightarrow{P R}$.
(2 marks)
(c) The point S has coordinates (a, b).
(i) Write $\overrightarrow{Q S}$ as a column vector, in terms of a and b.
(ii) Given that $\overrightarrow{Q S}=\overrightarrow{O P}$, calculate the value of a and the value of b. ($\mathbf{3}$ marks)
(iii) Using a vector method, show that $O P S Q$ is a parallelogram.

