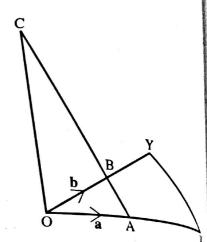
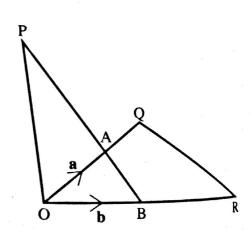

Exercise 10


- 1. $\overrightarrow{OD} = 2\overrightarrow{OA}$,
 - $\overrightarrow{OE} = 3\overrightarrow{OB}$,
 - $\overrightarrow{OA} = \mathbf{a}$ and
 - (a) Express \overrightarrow{OD} and \overrightarrow{OE} in terms of **a** and **b** respectively.
 - (b) Express \overrightarrow{BA} in terms of **a** and **b**.

 - (d) Given that $\overrightarrow{BC} = 4\overrightarrow{BA}$, express \overrightarrow{OC} in terms of **a** and **b**.

 - (f) Use the results for \overrightarrow{ED} and \overrightarrow{EC} to show that points E, D and C lie on a straight line.



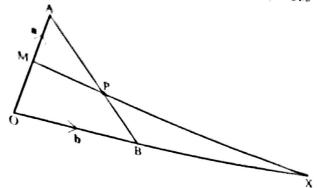
- (a) Express \overrightarrow{OY} and \overrightarrow{OX} in terms of **b** and **a** respectively.
- (b) Express \overrightarrow{AB} in terms of **a** and **b**.
- (c) Express \overrightarrow{XY} in terms of **a** and **b**.
- (d) Given that $\overrightarrow{AC} = 6\overrightarrow{AB}$, express \overrightarrow{OC} in terms of **a** and **b**.
- (e) Express \overrightarrow{XC} in terms of **a** and **b**.
- (f) Use the results for \overrightarrow{XY} and \overrightarrow{XC} to show that points X, Y and C lie on a straight line.

3.
$$\overrightarrow{OA} = \mathbf{a}$$
,
 $\overrightarrow{OB} = \mathbf{b}$,
 $\overrightarrow{AQ} = \frac{1}{2}\mathbf{a}$,
 $\overrightarrow{BR} = \mathbf{b}$ and
 $\overrightarrow{AP} = 2\overrightarrow{BA}$

- (a) Express \overrightarrow{BA} and \overrightarrow{BP} in terms of **a** and **b**.
- (b) Express \overrightarrow{RQ} in terms of **a** and **b**.
- (c) Express \overrightarrow{QA} and \overrightarrow{QP} in terms of **a** and **b**.
- (d) Using the vectors for \overrightarrow{RQ} and \overrightarrow{QP} , show that R, Q and P lie on

AP in terms of a and b.

[Spress MA and MP in terms of a and b.


[Spress MA and MP in terms of a... Fapress MA and MP in terms of a and b.

(b) fapress on OB produced such that of the fapress of the factor of the f $\int_{\mathbb{R}^3}^{\mathbb{R}^3} \frac{|\mathbf{r}|^{1}}{|\mathbf{r}|^{1}} \frac{|\mathbf{r}|^{1}}{|\mathbf{r}|^{$ If X in terms of a and b. or a and b.

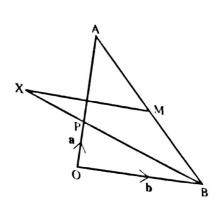
or a and b.

or a and b.

or a and b.

, OP = a. OB = mid-point of AB.

M is the mid-point of AB.


M is the \widehat{BP} and \widehat{AB} in terms of \mathbf{a} and \mathbf{b} .

(a) Express MB in terms of a and b.

(b) Express on BP produce:

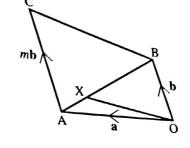
(b) Express on BP produced so that $\overrightarrow{BX} = k$. \overrightarrow{BP} , express (c) If X in terms of **a**, **b** and k. MX in terms of **a**, **b** and k.

MX in the value of k if MX is parallel to BO.

6 AC is parallel to OB,

 $\overrightarrow{AX} = \frac{1}{4}\overrightarrow{AB},$

 $\overrightarrow{0A} = \mathbf{a},$ $\overrightarrow{OB} = \mathbf{b}$ and

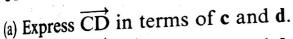

 $\overrightarrow{AC} = m\mathbf{b}.$

(a) Express \overrightarrow{AB} in terms of **a** and **b**.

(b) Express \overrightarrow{AX} in terms of **a** and **b**.

(c) Express \overrightarrow{BC} in terms of **a**, **b** and *m*.

(d) Given that OX is parallel to BC, find the value of m.

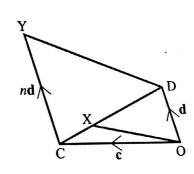

1. CY is parallel to OD,

 $\overrightarrow{CX} = \frac{1}{5}\overrightarrow{CD},$

 $\overrightarrow{0C} = \mathbf{c},$

 $\overrightarrow{OD} = \mathbf{d}$ and

 $\overrightarrow{CY} = n\mathbf{d}$.

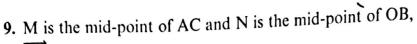


(b) Express \overrightarrow{CX} in terms of \mathbf{c} and \mathbf{d} .

(c) Express \overrightarrow{OX} in terms of \mathbf{c} and \mathbf{d} .

(d) Express \overrightarrow{DY} in terms of c, d and n.

(e) Given that OX is parallel to DY, find the value of n.

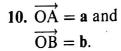


8. M is the mid-point of AB, N is the mid-point of OB,

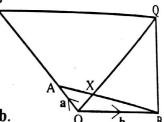
$$\overrightarrow{OA} = \mathbf{a}$$
 and

$$\overrightarrow{OB} = \mathbf{b}$$
.

- (a) Express \overrightarrow{AB} , \overrightarrow{AM} and \overrightarrow{OM} in terms of **a** and **b**.
- (b) Given that G lies on OM such that OG: GM = 2:1, express \overrightarrow{OG} in terms of **a** and **b**.
- (c) Express \overrightarrow{AG} in terms of **a** and **b**.
- (d) Express \overrightarrow{AN} in terms of **a** and **b**.
- (e) Show that $\overrightarrow{AG} = m\overrightarrow{AN}$ and find the value of m.



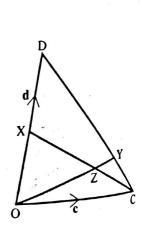
$$\overrightarrow{OA} = \mathbf{a}$$
,


$$\overrightarrow{OB} = \mathbf{b}$$
 and

$$\overrightarrow{OC} = \mathbf{c}$$
.

- (a) Express \overrightarrow{AB} in terms of **a** and **b**.
- (b) Express \overrightarrow{ON} in terms of **b**.
- (c) Express \overrightarrow{AC} in terms of a and c.
- (d) Express \overrightarrow{AM} in terms of a and c.
- (e) Express \overrightarrow{OM} in terms of a and c.
- (f) Express \overrightarrow{NM} in terms of \mathbf{a} , \mathbf{b} and \mathbf{c} .
- (g) If N and M coincide, write down an equation connecting a, b and c.

- (a) Express \overrightarrow{BA} in terms of a and b.
- (b) Given that $\overrightarrow{BX} = m\overrightarrow{BA}$, show that $\overrightarrow{OX} = m\mathbf{a} + (1 m)\mathbf{b}$.
- (c) Given that $\overrightarrow{OP} = 4a$ and $\overrightarrow{PQ} = 2b$, express \overrightarrow{OQ} in terms of a and b.
- (d) Given that $\overrightarrow{OX} = n\overrightarrow{OQ}$ use the results for \overrightarrow{OX} and \overrightarrow{OQ} to find the values of m and n.


11. X is the mid-point of OD, Y lies on CD such that

$$\overrightarrow{CY} = \frac{1}{4}\overrightarrow{CD},$$

$$\overrightarrow{OC} = \mathbf{c}$$
 and

$$\overrightarrow{\mathrm{OD}} = \mathbf{d}$$
.

- (a) Express \overrightarrow{CD} , \overrightarrow{CY} and \overrightarrow{OY} in terms of **c** and **d**.
- (b) Express \overrightarrow{CX} in terms of **c** and **d**.
- (c) Given that $\overrightarrow{CZ} = h\overrightarrow{CX}$, express \overrightarrow{OZ} in terms of c, d and h.
- (d) If $\overrightarrow{OZ} = k\overrightarrow{OY}$, form an equation and hence find the values of h and k.

