LIMITS OF ACCURACY SUMMARY

If a number A is rounded to a specific place value then the Limits of Accuracy of A are:

$$A_{UPPERBOUND} = A + \frac{place\ value}{2} \qquad \text{and} \qquad A_{LOWERBOUND} = A - \frac{place\ value}{2}$$
 So $A_{LOWERBOUND} \leq A < A_{UPPERBOUND}$

If A is multiplied by a **positive** number, k, the limits of the new number, kA become:

$$kA_{LOWERBOUND} \le kA < kA_{UPPERBOUND}$$

If A is multiplied by a **negative** number, -k, the limits of the new number, -kA become:

$$-kA_{LOWERBOUND} \ge kA > -kA_{UPPERBOUND}$$

If another number $\it B$ is rounded to a specific $\it place \ value \$ and the Limits of Accuracy of $\it B$ are found as

$$B_{LOWERBOUND} \leq B < B_{UPPERBOUND}$$

Then the Limits of Accuracy for combinations of $\it A$ and $\it B$ can be found as follows:

Sum:
$$A_{LOWERBOUND} + B_{LOWERBOUND} \le A + B < A_{UPPERBOUND} + B_{UPPERBOUND}$$

Difference:
$$A_{LOWERBOUND} - B_{UPPERBOUND} \le A - B < A_{UPPERBOUND} - B_{LOWERBOUND}$$

Product:
$$A_{LOWERBOUND} \times B_{LOWERBOUND} \le A \times B < A_{UPPERBOUND} \times B_{UPPERBOUND}$$

Quotient:
$$\frac{A_{LOWERBOUND}}{B_{UPPERBOUND}} \le \frac{A}{B} < \frac{A_{UPPERBOUND}}{B_{LOWERBOUND}}$$

Generated by CamScanner from intsig.com