Question 1

$O A B$ is a triangle and $O B D C$ is a rectangle where $O D$ and $B C$ intersect at E.
F is the point on $C D$ such that $C F=\frac{3}{4} C D$.
$\overrightarrow{O A}=\mathbf{a}, \overrightarrow{O B}=\mathbf{b}$ and $\overrightarrow{O C}=\mathbf{c}$.

(a) Express, as simply as possible, in terms of one or more of the vectors \mathbf{a}, \mathbf{b} and \mathbf{c},
(i) $\overrightarrow{A B}$,

> Answer
(ii) $\overrightarrow{O E}$,

> Answer
(iii) $\overrightarrow{E F}$.

Answer

(b) G is the point on $A B$ such that $\overrightarrow{O G}=\frac{3}{5} \mathbf{a}+\frac{2}{5} \mathbf{b}$.
(i) Express $\overrightarrow{A G}$ in terms of \mathbf{a} and \mathbf{b}.

Give your answer as simply as possible.

Answer

(ii) Find $A G: G B$.

Answer \qquad :
(iii) Express $\overrightarrow{F G}$ in terms of \mathbf{a}, \mathbf{b} and \mathbf{c}. Give your answer as simply as possible.

Question 2

$$
\mathbf{m}=\binom{3}{-2} \quad \mathbf{n}=\binom{-1}{4}
$$

(a) Calculate $\mathbf{m}-2 \mathbf{n}$.
(b) Given that $s \mathbf{m}+3 \mathbf{n}=\binom{12}{t}$, calculate s and t.

$$
\text { Answer } \quad(1]
$$

Question 3

(a)

In the diagram, $A B C D E F$ is a hexagon with rotational symmetry of order 2 .
$\overrightarrow{E D}=2 \mathbf{p}, \overrightarrow{E F}=\mathbf{q}$ and $\overrightarrow{A F}=\mathbf{r}$.
X is the midpoint of $C D$ and Y is the point on $A B$ such that $A Y: Y B$ is $3: 1$.
(i) How many lines of symmetry does $A B C D E F$ have?

Answer
(ii) Express, as simply as possible, in terms of one or more of the vectors \mathbf{p}, \mathbf{q} and \mathbf{r},
(a) $\overrightarrow{E A}$,

Answer
(b) $\overrightarrow{F C}$,

Answer
(c) $\overrightarrow{F Y}$,

Answer
(d) $\overrightarrow{Y X}$

Question 4

(a) $\mathbf{A}=\left(\begin{array}{rr}-1 & 2 \\ 3 & -1\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{rr}4 & 2 \\ -3 & -1\end{array}\right)$.
(i) Find $\mathbf{A B}$.

Answer
(ii) Find \mathbf{B}^{-1}.
(b) $\overrightarrow{P Q}=\binom{12}{5}$ and $\overrightarrow{Q R}=\binom{-4}{1}$.
(i) Calculate $|\overrightarrow{P Q}|$.

Answer
(ii) Find $\overrightarrow{P R}$.
(c) You may use the grid below to help you answer this question.
T is the point $(13,7)$ and U is the point $(8,9)$.
(i) Find $\overrightarrow{T U}$.

Answer

(ii) $T U V$ is an isosceles triangle with $T U=T V$.

The y-coordinates of the points U and V are equal.
Find the coordinates of V.

Answer

(........... ,)
[1]
(iii) W is the point $(1,3)$.

Calculate the area of triangle $T U W$.

Answer \qquad units ${ }^{2}$ [3]

